DETERMINASI AMPEROMETRIK SENYAWA HIDRAZINA MENGGUNAKAN ELEKTRODA CUS/RGO-CP TERMODIFIKASI

Dian Kharismadewi(1 ), Sri Martini(2)

(1) Program Studi Magister Teknik Kimia, Universitas Muhammadiyah Palembang
(2) Program Studi Magister Teknik Kimia, Universitas Muhammadiyah Palembang
() Korespondensi Penulis
Abstrak Dilihat: 349 , PDF Unduh: 360
Kata Kunci: CuS, Graphene Oksida Terduksi, Solvotermal, Sensor Elektrokimia, Hidrazina

Abstrak

Tembaga sulfida (CuS) merupakan material semikonduktor tipe-p yang dapat digunakan pada aplikasi sensor elektrokimia. CuS dimodifikasi dengan material Graphene oksida tereduksi (rGO) pada permukaan elektroda carbon paper (CP) untuk meningkatkan mobilitas elektron dan konduktivitas elektronik CuS yang rendah. Material CuS/rGO-CP ini kemudian digunakan sebagai material sensor senyawa Hidrazina yang terdapat pada air limbah. CuS-rGO disintesa melalui reaksi solvotermal pada temperatur 200oC, dimana dihasilkan bentuk CuS nanosphere dengan ukuran 220 nm yang terdekorasi pada permukaan rGO. Hasil uji cyclic voltammetry dan amperometri menunjukkan bahwa elektroda CuS/rGO-CP memiliki respon elektronik dan stabilitas material yang lebih baik dibandingkan elektroda CuS-CP. Selain itu, CuS/rGO-CP juga memiliki kestabilan yang baik terhadap interferensi seperti K+, SO42-, PO43-, Na+ dan Cl-, dengan standar deviasi sebesar 5,5% (n=3). Selanjutnya, dari hasil uji reproducibility, elektroda CuS/rGO-CP menunjukkan hasil yang baik yaitu sebesar 1,8% (n=3) pada standar deviasi relatif. Dari hasil analisa yang dilakukan disimpulkan bahwa material elektroda CuS/rGO-CP memiliki potensi yang baik sebagai material sensor senyawa Hidrazina, selain merupakan elektroda yang ramah terhadap lingkungan.

Unduhan

Data unduhan belum tersedia.

Referensi

Avanes, Armen, Mohammad Hasanzadeh-Karamjavan, and Golnaz Shokri-Jarcheloo. 2019. “Electrocatalytic Oxidation and Amperometric Determination of Hydrazine Using a Carbon Paste Electrode Modified with β-Nickel Hydroxide Nanoplatelets.” Microchimica Acta 186 (7): 441. https://doi.org/10.1007/s00604-019-3555-x.

Barth, Andreas. 2007. “Infrared Spectroscopy of Proteins.” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1767 (9): 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004.

Kavitha, Thangavelu, Syed Izhar Haider Abdi, and Soo-Young Park. 2013. “PH-Sensitive Nanocargo Based on Smart Polymer Functionalized Graphene Oxide for Site-Specific Drug Delivery.” Physical Chemistry Chemical Physics 15 (14): 5176. https://doi.org/10.1039/c3cp00008g.

Kharismadewi, Dian, Yuvaraj Haldorai, Van Hoa Nguyen, Dirk Tuma, and Jae-Jin Shim. 2016. “Synthesis of Graphene Oxide-Poly(2-Hydroxyethyl Methacrylate) Composite by Dispersion Polymerization in Supercritical CO 2 : Adsorption Behavior for the Removal of Organic Dye.” Composite Interfaces 23 (7): 719–39. https://doi.org/10.1080/09276440.2016.1169707.

Kim, Hee-Je, Lee Myung-Sik, Chandu V. V. M. Gopi, M. Venkata-Haritha, S. Srinivasa Rao, and Soo-Kyoung Kim. 2015. “Cost-Effective and Morphology Controllable PVP Based Highly Efficient CuS Counter Electrodes for High-Efficiency Quantum Dot-Sensitized Solar Cells.” Dalton Transactions 44 (25): 11340–51. https://doi.org/10.1039/C5DT01412C.

Kosyakov, D. S., A. S. Amosov, N. V. Ul’yanovskii, A. V. Ladesov, Yu. G. Khabarov, and O. A. Shpigun. 2017. “Spectrophotometric Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine with Preliminary Derivatization by 5-Nitro-2-Furaldehyde.” Journal of Analytical Chemistry 72 (2): 171–77. https://doi.org/10.1134/S106193481702006X.

Lee, Kyungjae, Yong Kyoung Yoo, Myung Sic Chae, Kyo Seon Hwang, Junwoo Lee, Hyungsuk Kim, Don Hur, and Jeong Hoon Lee. 2019. “Highly Selective Reduced Graphene Oxide (RGO) Sensor Based on a Peptide Aptamer Receptor for Detecting Explosives.” Scientific Reports 9 (1): 1–10. https://doi.org/10.1038/s41598-019-45936-z.

Liu, Yanzhen, Yongfeng Li, Yonggang Yang, Yuefang Wen, and Maozhang Wang. 2011. “Reduction of Graphene Oxide by Thiourea.” Journal of Nanoscience and Nanotechnology 11 (11): 10082–86. https://doi.org/10.1166/jnn.2011.4985.

Lu, Yang, Xianming Liu, Weixiao Wang, Jinbing Cheng, Hailong Yan, Chengchun Tang, Jang Kyo Kim, and Yongsong Luo. 2015. “Hierarchical, Porous CuS Microspheres Integrated with Carbon Nanotubes for High-Performance Supercapacitors.” Scientific Reports 5 (October): 1–11. https://doi.org/10.1038/srep16584.

Madhu, Rajesh, Bose Dinesh, Shen-Ming Chen, Ramiah Saraswathi, and Veerappan Mani. 2015. “An Electrochemical Synthesis Strategy for Composite Based ZnO Microspheres–Au Nanoparticles on Reduced Graphene Oxide for the Sensitive Detection of Hydrazine in Water Samples.” RSC Advances 5 (67): 54379–86. https://doi.org/10.1039/C5RA05612H.

Mayorov, Alexander S., Roman V. Gorbachev, Sergey V. Morozov, Liam Britnell, Rashid Jalil, Leonid A. Ponomarenko, Peter Blake, et al. 2011. “Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature.” Nano Letters 11 (6): 2396–99. https://doi.org/10.1021/nl200758b.

McAdam, Kevin, Harriet Kimpton, Sofia Essen, Peter Davis, Carl Vas, Christopher Wright, Andrew Porter, and Brad Rodu. 2015. “Analysis of Hydrazine in Smokeless Tobacco Products by Gas Chromatography-Mass Spectrometry.” Chemistry Central Journal 9 (1): 1–12. https://doi.org/10.1186/s13065-015-0089-0.

Nia, P.M, Pei Meng Woi, and Yatimah Alias. 2017. “Facile One-Step Electrochemical Deposition of Copper Nanoparticles and Reduced Graphene Oxide as Nonenzymatic Hydrogen Peroxide Sensor.” Applied Surface Science 413 (August): 56–65. https://doi.org/10.1016/j.apsusc.2017.04.043.

Park, Jungsoon, Hee Chul Eun, Seonbyeong Kim, Changhyun Roh, and So Jin Park. 2019. “Colorimetric Method for Detection of Hydrazine Decomposition in Chemical Decontamination Process.” Energies 12 (20). https://doi.org/10.3390/en12203967.

Peng, Hui, Guofu Ma, Jingjing Mu, Kanjun Sun, and Ziqiang Lei. 2014. “Controllable Synthesis of CuS with Hierarchical Structures via a Surfactant-Free Method for High-Performance Supercapacitors.” Materials Letters 122 (May): 25–28. https://doi.org/10.1016/j.matlet.2014.01.173.

Raoof, Jahan Bakhsh, Reza Ojani, and Ziya Mohammadpour. 2010. “Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine by 1,1’-Ferrocenedicarboxylic Acid at Glassy Carbon Electrode.” International Journal of Electrochemical Science 5 (2): 177–88.

Saranya, Murugan, Rajendran Ramachandran, Pratap Kollu, Soon Kwan Jeong, and Andrews Nirmala Grace. 2015. “A Template-Free Facile Approach for the Synthesis of CuS–RGO Nanocomposites towards Enhanced Photocatalytic Reduction of Organic Contaminants and Textile Effluents.” RSC Advances 5 (21): 15831–40. https://doi.org/10.1039/C4RA09029B.

Shi, Jingjing, Xiaoyan Zhou, Ya Liu, Qingmei Su, Jun Zhang, and Gaohui Du. 2014. “Sonochemical Synthesis of CuS/Reduced Graphene Oxide Nanocomposites with Enhanced Absorption and Photocatalytic Performance.” Materials Letters 126 (July): 220–23. https://doi.org/10.1016/j.matlet.2014.04.051.

Smolenkov, A. D. 2012. “Chromatographic Methods of Determining Hydrazine and Its Polar Derivatives.” Review Journal of Chemistry 2 (4): 329–54. https://doi.org/10.1134/s2079978012040048.

Smolenkov, A. D., I. A. Rodin, and O. A. Shpigun. 2012. “Spectrophotometric and Fluorometric Methods for the Determination of Hydrazine and Its Methylated Analogues.” Journal of Analytical Chemistry 67 (2): 98–113. https://doi.org/10.1134/S1061934812020116.

Srinidhi, G., S. Sudalaimani, K. Giribabu, S.J. Sardhar Basha, and C. Suresh. 2020. “Amperometric Determination of Hydrazine Using a CuS-Ordered Mesoporous Carbon Electrode.” Microchimica Acta 187 (6): 359. https://doi.org/10.1007/s00604-020-04325-4.

Sun, Shaodong, Pengju Li, Shuhua Liang, and Zhimao Yang. 2017. “Diversified Copper Sulfide (Cu 2−x S) Micro-/Nanostructures: A Comprehensive Review on Synthesis, Modifications and Applications.” Nanoscale 9 (32): 11357–404. https://doi.org/10.1039/C7NR03828C.

Thongtem, Titipun, Anukorn Phuruangrat, and Somchai Thongtem. 2009. “Formation of CuS with Flower-like, Hollow Spherical, and Tubular Structures Using the Solvothermal-Microwave Process.” Current Applied Physics 9 (1): 195–200. https://doi.org/10.1016/j.cap.2008.01.011.

US-EPA. 2000. “Hydrazine Hazard Summary.” Chemical Safety Alert. https://www.epa.gov/sites/production/files/2016-09/documents/hydrazine.pdf.

Yang, Yu Jun, Weikun Li, and Xiaoman Wu. 2014. “Copper Sulfide|reduced Graphene Oxide Nanocomposite for Detection of Hydrazine and Hydrogen Peroxide at Low Potential in Neutral Medium.” Electrochimica Acta 123 (March): 260–67. https://doi.org/10.1016/j.electacta.2014.01.046.

Zhang, Yu-Qiao, Bo-Ping Zhang, Zhen-Hua Ge, Li-Feng Zhu, and Yan Li. 2014. “Preparation by Solvothermal Synthesis, Growth Mechanism, and Photocatalytic Performance of CuS Nanopowders.” European Journal of Inorganic Chemistry 2014 (14): 2368–75. https://doi.org/10.1002/ejic.201400098.
Diterbitkan
2021-06-30
Bagaimana Mensitasi
Kharismadewi, D., & Martini, S. (2021). DETERMINASI AMPEROMETRIK SENYAWA HIDRAZINA MENGGUNAKAN ELEKTRODA CUS/RGO-CP TERMODIFIKASI. Publikasi Penelitian Terapan Dan Kebijakan, 4(1), 26-34. https://doi.org/https://doi.org/10.46774/pptk.v4i1.339