PUBLIKASI PENELITIAN TERAPAN DAN KEBIJAKAN

e-ISSN: 2621-8119

PENGARUH LUAS LAHAN SAWAH DAN LUAS TANAM TERHADAP PRODUKSI PADI DI SUMATERA SELATAN MELALUI ANALISIS REGRESI

THE EFFECT OF RICE FIELD AREA AND PLANTING AREA ON RICE PRODUCTION IN SOUTH SUMATRA THROUGH REGRESSION ANALYSIS

Wenni Tania Defrivanti

Badan Penelitian dan Pengembangan Daerah Provinsi Sumatera Selatan Jl. Demang Lebar Daun No. 4864, Palembang, Indonesia *Korespondensi Penulis, e-mail: wen.taniadefriyanti@litbangda.sumselprov.go.id

ABSTRACT

Paddy fields have a strategic function because they are the leading food suppliers for the Indonesian population. The paddy fields in the province of South Sumatera consist of irrigation, rain, tides, and Lebak land. Utilization with rice planting places South Sumatra as the sixth contributor to national rice production. The study uses a quantitative approach with simple regression analysis and multiple regression methods. A simple regression analysis was carried out between the land area variable and the rice harvest area, each with rice production. A multiple regression analysis was carried out between the land area and harvest area variables with rice production. Data analysis using the Microsoft Excel Program version of 2010. From the results of the analysis shows that Banyuasin is a regency that has the total area of paddy fields that is the widest 202.682 ha, and East Ogan Komering Ulu is the district that has the widest rice planting area is 179.307 ha and is the largest producer of rice production is 1, 162.123 ton. The area of paddy fields (X1) and planting area (X2) have a positive and significant effect on rice production (Y) in the Regency/city of South Sumatera province with a correlation rate of 94% (high).

Keywords: Rice production, rice field area, planting area, regression analysis

ABSTRAK

Lahan sawah memiliki fungsi strategis, merupakan penyedia bahan pangan utama bagi penduduk Indonesia. Lahan sawah di Provinsi Sumatera Selatan terdiri atas lahan irigasi, tadah hujan, pasang surut dan lebak. Pemanfaatannya dengan penanaman padi menempatkan posisi Sumatera Selatan sebagai penyumbang produksi keenam terhadap produksi padi nasional. Kajian menggunakan pendekatan kuantitatif dengan metode analisis regresi sederhana dan regresi berganda. Analisis regresi sederhana dilaksanakan antara peubah luas lahan dan peubah luas panen padi, masing-masing dengan produksi padi. Analisis regresi ganda dilaksanakan antara peubah luas lahan dan luas panen dengan produksi padi. Dari hasil analisis menunjukkan bahwa Banyuasin merupakan kabupaten yang memiliki total areal lahan sawah terluas yaitu 202.682ha, dan OKU Timur merupakan kabupaten yang memiliki areal tanam padi terluas yaitu 179.307ha, serta merupakan penghasil produksi padi terbanyak yaitu 1,162.123ton. Luas lahan sawah (X₁) dan luas tanam (X₂) sangat berpengaruh positif dan signifikan terhadap produksi padi (Y) di Kabupaten/Kota Provinsi Sumatera Selatan dengan tingkat korelasi sebesar 94% (tinggi).

Kata Kunci : Produksi padi, luas lahan sawah, luas tanam, analisis regresi

PENDAHULUAN

Indonesia adalah merupakan Negara agraris dan sebagian besar penduduknya memiliki pekerjaan utama yang berada di sektor pertanian atau dari produk nasional yang berasal dari pertanian (Harini et al. 2019;Irawan 2015; Mubyarto 1989). Sektor pertanian merupakan salah satu sektor yang berperan penting dalam perekonomian Indonesia (Sastraatmadja 1991).

Besarnya peran sektor pertanian di Indonesia tidak langsung membuat sektor ini bebas dari berbagai masalah, salah satunya adalah konversi lahan dari pertanian menjadi nonpertanian (Harini et al. 2019). Di luar Pulau Jawa konversi lahan lebih tinggi di mana konversi lahan dilakukan untuk kegiatan nonpertanian (56,68 persen) dan kegiatan bukan sawah (perkebunan, pertambangan, dan lain sebagainya) (Irawan 2016; Harini et al. 2019).

Menurut Sitorus (2004) dalam (Abdullah 2018), sumberdaya lahan merupakan sumberdaya alam yang sangat penting untuk kelangsungan hidup manusia karena diperlukan dalam setiap kegiatan manusia. Penggunaan sumberdaya lahan khususnya untuk kegiatan pertanian pada pertanian pada umumnya ditentukan oleh kemampuan lahan dan kesesuaian lahan.

Lahan sawah memiliki fungsi strategis, karena merupakan penyedia bahan pangan utama bagi penduduk Indonesia (Wahyunto 2009). Pertambahan jumlah penduduk dan meningkatnya kebutuhan akan lahan untuk berbagai sektor membuat konversi lahan sawah cenderung mengalami peningkatan, di lain pihak pencetakan lahan sawah baru (ekstensifikasi) mengalami perlambatan (Abdullah 2018).

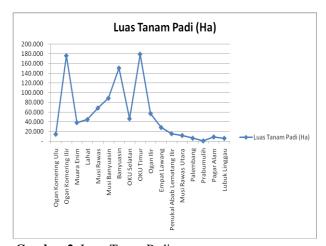
Lahan sawah di Provinsi Sumatera Selatan terdiri atas empat agroekosistem utama yaitu lahan irigasi, tadah hujan, pasang surut dan lebak. Pemanfaatannya dengan penanaman padi menempatkan posisi Sumatera Selatan sebagai penyumbang produksi keenam terhadap produksi padi nasional.


Luas total lahan di Sumatera Selatan berdasarkan penggunaannya untuk tanaman padi adalah 739.395 ha (Badan Pusat Statistik 2017). Tersebar di lahan Irigasi 16,82%, lahan tadah hujan 12,55%, lahan pasang surut 34,28%, lahan lebak 36,01%.

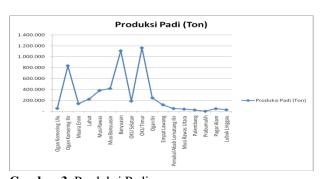
Selain agroekosistem, faktor lain yang mempengaruhi produktivitas dan produksi padi pada masing-masing agroekosistem adalah luas lahan dan luas tanam. Eksistensi kedua faktor ini beragam di 17 kabupaten/kota lingkup Sumatera Selatan. Tulisan ini bertujuan untuk mengetahui sejauh mana pengaruh luas lahan dan luas tanam padi di 17 kabupaten/kota Sumatera Selatan mempengaruhi produksi padi.

METODE PENELITIAN

Kajian menggunakan pendekatan kuantitatif dengan metode analisis regresi sederhana dan regresi berganda. Data yang sekunder dianalisis adalah data bersumber dari Dinas Pertanian Tanaman Pangan dan Hortikultura Provinsi Sumatera Selatan Tahun 2018. Peubah yang dianalisis adalah luas lahan, luas panen padi dan produksi padi. Analisis regresi sederhana dilaksanakan antara peubah luas lahan dan peubah luas panen padi, masing-masing dengan produksi padi. Analisis regresi ganda dilaksanakan antara peubah luas lahan dan luas panen dengan produksi padi. Analisis data menggunakan Program Microsoft Excell versi tahun 2010.


HASIL DAN PEMBAHASAN

Gambar 1. Luas LahanSawah


Sumber: Dinas Pertanian TPH Provinsi Sumatera Selatan. 2018.

Dari Gambar 1. diatas dapat diketahui bahwa pada tahun 2017 Banyuasin merupakan kabupaten yang memiliki total areal lahan sawah terluas yaitu 202.682 ha, sedangkan Prabumulih merupakan kota yang memiliki total areal lahan sawah paling rendah yaitu seluas 700 ha.

Gambar 2. Luas TanamPadi Sumber: Dinas Pertanian TPH Provinsi Sumatera Selatan, 2018.

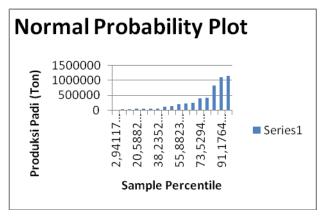
Berdasarkan Gambar 2. diatas dapat diketahui bahwa OKU Timur merupakan kabupaten yang memiliki areal tanam padi terluas yaitu 179.307 ha, sedangkan Prabumulih merupakan kota yang memiliki areal tanam padi terendah yaitu seluas 666 ha.

Gambar 3. Produksi Padi Sumber : Dinas Pertanian TPH Provinsi Sumatera Selatan, 2018.

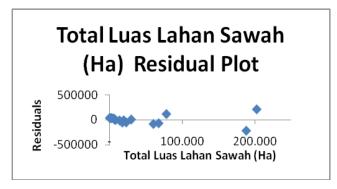
Berdasarkan Gambar 3. diatas OKU Timur merupakan Kabupaten penghasil padi terbanyak yaitu 1.162.123 ton, sedangkan wilayah penghasil padi terendah yaitu Kota Prabumulih sebanyak 2.091 ton.

Gambar 4. Hubungan antara Luas Tanam Padi dan Produksi Padi

Bentuk hubungan antara luas tanam padi dan produksi disajikan pada Gambar 4. Bentuk hubungan antara kedua parameter tersebut adalah linier positif ($R^2=0.944$) dengan persamaan regresi sederhana. Hasil analisis ini menunjukkan bahwa produksi padi meningkat secara nyata dengan bertambahnya luas tanam padi.


Gambar 5. Hubungan antara Total Luas Lahan Sawah dan Produksi Padi

Grafik diatas menggambarkan tingkat linier yang cukup tinggi antara total luas lahan sawah dan produksi padi yaitu sebesar 0,735. Dengan kata lain total luas lahan sawah yang terdapat di Kabupaten/kota lingkup Sumatera Selatan memiliki hubungan yang erat dengan hasil produksi padi.


SUMMARY OUTPUT					
Regression	Statistics				
Multiple R	0,972170533				
R Square	0,945115546				
Adjusted R Square	0,93727491				
Standard Error	94383,3152				
Observations	17				
ANOVA					
	df	SS	MS	F	Significance F
Regression	2	2.147.603.233.106,48	1.073.801.616.553,24	120,54	0,00000001500
Residual	14	124.714.942.645,29	8.908.210.188,95		
Total	16	2.272.318.175.751.76			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
Intercept	-40908,31502	32180,38495	-1,271218945	0,224366167	-109928,3761	28111,74602	-109928,3761	28111,74602
Total Luas Lahan Sawah (Ha)	0,201600584	0,78317747	0,257413667	0,800604371	-1,478148023	1,881349192	-1,478148023	1,881349192
Luas Taram Padi (Ha)	5,972668529	0,815883282	7,320493823	3,788E-06	4,222772932	7,722564127	4,222772932	7,722564127
RESIDUAL OUTPUT					PROBABILITY OUTPUT			
Observation	Predicted Produksi Padi (Ton)	Residuals	Standard Residuals		Percentile	Produksi Padi (Ton)		
1	46963,20822	7267,791777	0,082319594		2,941176471	2091		
1	1048929,265	-214106,2652	-2,425102624		8,823529412	25837		
	192981,8816	-51780,88164	-0,58650293		14,70588235	28336		
4	229759,6735	-7470,673509	-0,084617561		20,58823529	41298		
	373897,7187	8298,281251	0,093991568		26,47058824	48815		
	500431,4927	-81710,49275	-0,925504586		32,35294118	51865		
1	899221,359	209086,641	2,368247193		38,23529412	54231		
8	240045,532	-53094,532	-0,601382163		44,11764706	120409		
9	1045875,743	116247,2572	1,316689767		50	141201		
10	313064,5851	-66428,58508	-0,75241206		55,88235294	186951		
T1	130988,8215	-10579,82153	-0,119833733		61,76470588	222289		
12	53328,22397	-1463,223974	-0,016573398		67,64705882	246636		
13	31126,24076	10171,75924	0,115211762		73,52941176	382196		
14	-2444,229237	28281,22924	0,320331043		79,41176471	418721		
15	5 -36789,39737	38880,39737	0,440383907		85,29411765	834823		
16	12710,52941	36104,47059	0,40894201		91,17647059	1108308		
17	-3960,648077	32296,64808	0,36581221		97,05882353	1162123		

Gambar 6. Hubungan antara Total Luas Lahan, Luas Tanam dan Produksi

Gambar 7. Normal Probability Plot

Gambar 8. Total Luas LahanSawah (ha) Residual Plot

Dari hasil analisis regresi dapat diketahui bahwa terdapat hubungan antara total luas lahan sawah dan luas tanam dengan produksi padi dengan tingkat korelasi 94%. Hasil analisis ini menunjukkan bahwa produksi padi meningkat secara nyata dengan meningkatnya luas sawah dan luas tanam padi.

KESIMPULAN

Berdasarkan hasil analisis dapat diketahui bahwa regresi luas lahan sawah dan luas panen padi dengan produksi padi membentuk hubungan linier positif sangat nyata. Peningkatan atau penurunan besaran kedua parameter ini akan sangat mempengaruhi produksi padi. Penurunan luas lahan untuk kepentingan non pertanian perlu diantisipasi untuk menghindari dampaknya terhadap penurunan produksi.

DAFTAR PUSTAKA

Abdullah, Muhammad. 2018. "Strategi Peningkatan Produksi Komoditas Padi Sawah Di Kabupaten Halmahera Timur." Universitas Hasanuddin.

Badan Pusat Statistik. 2017. "Provinsi Sumatera Selatan Dalam Angka Tahun 2017."

Harini, Rika, Rina Dwi Ariani, Supriyati Supriyati, and M Chrisna Satriagasa. 2019. "Analisis Luas Lahan Pertanian Terhadap Produksi Padi Di Kalimantan Utara." *Jurnal Kawistara* 9 (1): 15. https://doi.org/10.22146/kawistara.38755

Irawan, Bambang. 2015. "Statistik Padi Tahun 2015." In .

——. 2016. "Konversi Lahan Sawah: Potensi Dampak, Pola Pemanfaatannya, Dan Faktor Determinan." *Forum Penelitian Agro Ekonomi* 23 (1): 1. https://doi.org/10.21082/fae.v23n1.2005. 1-18.

Mubyarto. 1989. *Pengantar Ekonomi Pertanian*. Jakarta: LPSE.

Sastraatmadja, E. 1991. Ekonomi Pertanian Indonesia: Masalah, Gagasan Dan Strategi.

Wahyunto. 2009. "Lahan Sawah Di Indonesia Sebagai Pendukung Pangan Nasional." *Informatika Pertanian Volume 18 No.2* 18 (2): 133–52.